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Abstract--This paper deals with a similarity analysis of axisymmetric mixed convection between two 
horizontal infinite coaxial disks. Governing equations with respect to a rotating frame of reference are 
formulated, and Boussinesq approximation is invoked to explore centrifugal-buoyancy effects. The 
rotational conditions of two disks rotating at different rates are mainly concerned. Upon considering 
Reynolds number up to 2000 and the buoyancy parameter (B = fiAT) of IBI ~< 0.1, the rotational effects 
on the flow and heat transfer characteristics are examined. Analytic features of the high-Re solution 
behaviors are also studied. By using the present similarity model, flow structure patterns of co-rotating, 
counter-rotating and rotor-stator systems under the influence of buoyancy effect are disclosed. Further- 
more, the resuAs also reveal the significance of centrifugal buoyancy in flow and heat transfer characteristics. 
For co-rotating disks, the centrifugal-buoyancy effects are reflected in the velocity field and skin friction. 
In the case of counter-rotating disks, remarkable buoyancy effects exert on the temperature field, heat 
transfer rate, and the radial skin friction. For rotor-stator systems, the buoyancy effects on boundary 

derivatives are insignificant, while those on core-flow in high-Re cases are noticeable. 

INTRODUCTION 

Rotating-disk flow has long been an important topic 
in fluid dynamic research for the interests in practical 
as well as academic senses. After the similarity analysis 
for the free-disk flow proposed by von Karman [1], 
numerous investigations have also been carried out 
for the flow fields as,;ociated with either single-disk or 
two coaxial disks. Batchelor [2] extended von Kar- 
man's analysis to explore the two-disk flow. By exam- 
ining the qualitative nature rather than actually solv- 
ing the governing equations, he proposed flow 
structure models for two-disk problems. Later on, 
based on the series solutions at low Reynolds numbers 
and the experimental observations, Stewartson [3] 
challenged Batchelor's conjecture. A number of inves- 
tigations [4-8] were carried out for better under- 
standing of this class of rotating flows. Math- 
ematically, the problem becomes very stiff at high 
Reynolds number, it leads to some difficulties in 
numerical calculations. Therefore, some previous 
investigations focused on the development of numeri- 
cal techniques for high Reynolds number solutions, 
e.g. the continuation method by Roberts and Shipman 
[9] and the ad hoc difference scheme by Barrett [10]. 

By considering the non-uniformity of the fluid tem- 
perature, the non-isothermal flow in a rotating device 
may encounter a b~oyancy effect in the presence of 
centrifugal force. The centrifugal buoyancy has been 
considered in some previous studies on rotating 
devices, e.g. the rotating closed cylinders [11-15], gas 
centrifuges [16, 17] and radially rotating channels [18- 

20]. Recently, mixed convection in rotating disk sys- 
tems with a radial through-flow was studied by solu- 
tions of boundary-layer equations [21, 22] and Nav- 
ier-Stokes equations [23]. For infinite coaxial disks 
without through-flow, Hudson [24] and Chew [25] 
have performed analyses for the non-isothermal flows 
between two co-rotating disks at the same rate. In 
the former, the problem was restricted to the low 
Reynolds number (Re <~ 100) and very small thermal 
Rossby number (fiAT< 0.01). While in the latter, 
Chew developed a linearized model by neglecting rad- 
ial viscous terms and nonlinear inertia terms in 
momentum equations. However, the solution was 
essentially a highly simplified one. 

In summary, as mentioned above, most of the pre- 
vious investigations on thermal effects concentrated 
their attention on the flow between two co-rotating 
disks at the same rate only. Most recently, a study 
on time-dependent non-isothermal flows in two-disk 
systems has been performed by Soong and Ma [26]. 
However, the work mainly concerned the unsteadiness 
of the system. It seems evident that after more than 
forty years of research in this field, there are still many 
interesting questions that remain open in the two- 
disk problems. The significance and influences of the 
centrifugal buoyancy in non-corotating systems (two 
disks rotating at different rates and/or different senses) 
have not been reported yet. 

Non-isothermal flows between two parallel infinite 
disks at various rotational conditions are considered 
in the present study, and the objective is to develop 
an axisymmetric model for the free, forced, and mixed 
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B buoyancy parameter or thermal 
Rossby number, flAT 

Cr skin friction coeffÉcient, 
2#(dU/c3Z)w/[p(g~,) 2] 

cp constant-pressure specific heat 
er, ez unit vectors in radial and axial 

directions 
F(r/) radial velocity function, U/R~I 
Fr Froude number, Sf~/g 
G(r/) tangential velocity function, V/R~I 
9 gravitational acceleration (9.81 m s 2) 
Gr Grashof number, (Sf~Z)flATS3 /v 2 
H(r/) axial velocity function, W/(v~)  ~/2 
K~, 1(2, 1(3 parameters in equation (19) 
Nu Nusselt number, - (c~T/On)w/(T 2 -  TO 
P static pressure 
P* dimensional pressure departure from 

the reference state, P* = P - P r  
Pr Prandtl number, v/~ 
R, ~0, Z cylindrical coordinates 
Ro outer radius of finite disk 
Re Reynolds number, ~S2/v 
Re* local Reynolds number, (Rf~)S/v 
Re~ tip Reynolds number for finite disks, 

tartly 
Ri Richardson number, Gr/Re 2 
S spacing between two coaxial 

disks 
T temperature 
A T characteristic temperature 

difference 
U, V, W velocity components in R-q~-Z 

coordinate system 
V velocity vector, (U, V, W). 

NOMENCLATURE 

Greek symbols 
ct thermal diffusivity, k/pcp 
fl thermal expansion coefficient, 

- (1/pr)(dplaT) 
fie Ekman layer thickness for location of 

peak value in F-distribution 
(~T thermal boundary-layer thickness for 

location of 0 = 0.999 
dimensionless relative rotation rate of 
disk 2, (f22-1)))/ff~l 

r/ dimensionless axial coordinate, Z/S 
0(r/) dimensionless temperature difference 

( T -  T~)/AT 
# dynamic viscosity 
v kinematic viscosity 

stretched coordinate, Re|/2r/ 
( transformed coordinate, ~ = 1 - r /  
~b dimensionless pressure, P*/pr(S~l) 2 

p density 
f~ rotational speed. 

Superscript 
(^) conjugate state 
( ) '  derivative, d( )/dr/. 

Subscripts 
1 first disk 
2 second disk 
c core 
r reference 
t tangential 
f~ rotation. 

convection flow and heat transfer. In the case of two 
disks rotating at the same rate (~2 = f~), the co- 
rotation of the disks leads the isothermal flow to a 
solid-body rotation as well as heat-conduction state 
and, with respect to a rotating frame attached to the 
system, the velocity vector V in this case is null. But 
centrifugal force in the presence of non-uniform tem- 
perature field may result a buoyancy-induced flow, 
which is a pure free-convection in nature. For  two 
disks rotating at different rates (f22 # f2~), however, 
even though the fluid is isothermal the radial and 
axial flows can be driven by the unbalanced Coriolis- 
induced pumping effects near the two disks. In the 
absence of other forced flow source, this can be 
regarded as the forced-flow in rotating disk systems. 
By additionally considering the density variation in 
centrifugal force term, the buoyancy effect can be 
accounted for. Since both forced and free convection 
flows are caused by the same factor, the disk rotation, 
the flow and heat transfer mechanisms are quite 

different from that in conventional mixed convection 
with gravity as the only body force. 

To take into account the density variation in cen- 
trifugal force term, Boussinesq approximation is 
invoked in the study. It has been demonstrated that 
the isothermal wall is the only possible thermal bound- 
ary condition for similarity transformation of rot- 
ating-disk problems [27]. By using the von Karman's  
hypothesis on velocity variables and proposing a 
properly-defined temperature function, the similarity 
equations can be formulated under the assumptions 
of axisymmetric flow and infinitely large disks. For  
very large tip Reynolds number Re~(= ~R2/v) in finite 
disk systems, say Re~ ~ O(105) or higher, the flows 
may become turbulent in nature [28], and rotating 
stall phenomenon [29] may appear. However, the 
flows still have the chance to be laminar and stall-free 
for lower Ret. In another respect, a similarity model 
is very useful in the study of some fundamental natures 
in rotating-disk flows. These class of theoretical analy- 
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ses have been used in considerable number of studies, 
such as refs. [1-6, 12, 13, 23, 24] for steady rotating- 
disk flows, Stewartson et al. [30], Singh et al. [31] and 
Soong and Ma [26] for unsteady rotating-disk flows, 
Higgins [32] and Rehg and Higgins [33] for film flow 
on rotating-disk, to name only a few. By using the 
similarity model developed presently, three situations 
of rotation: (1) two disks rotating in the same sense 
(eo-rotatin9 disks), (2) rotating in opposed senses 
(counter-rotatin9 di':ks) and (3) one disk rotating and 
another one at rest (for brevity, hereafter, the system 
is referred to as rotor-stator) are studied. The analytic 
features of the present similarity solutions, i.e. asymp- 
totic natures of the high-Re solutions including the 
Ekman and thermal boundary layers, and the core 
flow behaviors are addressed. For wider ranges of the 
parameters, numerical integrations are employed in 
exploring the flow ~nd heat transfer characteristics. 

THEORETICAL ANALYSIS 

Problem statement and formulation 
The flow configuration considered, as in Fig. 1, is a 

system of two horizontal infinite coaxial disks sep- 
arated by a spacing S. The disks are of constant tem- 
peratures T1 and T:, and rotate at rotational rates ~1 
and ~2, respectively. A cylindrical coordinate (R, ~0, 
Z) is fixed on the disk 1 and its origin lies at the disk 
center. With respecl to the rotating frame of reference, 
Coriolis and centrifugal forces appear explicitly in the 
momentum equation. The fluid flow is assumed to 
be steady, laminar, axi-symmetric and of constant- 
property; and Boussinesq approximation is invoked 
for study of the cenLrifugal buoyancy effects. For sim- 
plicity, viscous dissipation and compression work are 
both ignored. The velocity components in R, ~0 and Z 
directions are U, V and W, respectively. In the present 
study, the wall condition of disk 1 is used as the 
reference state, at which the fluid confined by the disks 
lies at the temperature Tr = T~ and rotates with the 
reference frame as a solid body, therefore, 
U =  V =  W-- 0 arid --VPr/Pr = ~ x ~ x R + 9 .  Fur- 
thermore, by considering a linear density-temperature 
relation, p = pr[1--fl(T-T~)],  the governing equa- 
tions can be depicted as a similar form in the work of 
Homsy and Hudson [13]: 

V ' V = 0  (1) 

(V" V)V + 2 ~  (ez ::< V) + Q~ R f l ( T -  Tr)er 

- - g f l ( T -  T~)e~ = - V P * / p r + v V 2 V  (2) 

s I "[ R 
I L  

(V. V) T = ~V 2 T (3) 

in which P* = P - P r  is the pressure departure from 
the reference condition, 1"~ = fl~er, R = Rer, and ez and 
er are the unit vectors in the axial and radial directions, 
respectively. 

In the present analysis, the following dimensionless 
variables and parameters are used, 

F(q) = U(R,Z)/Rf f t ,  G(tl) = V(R,Z)/R~-~ 1 

n(~l) = W ( R , Z ) / ( v ~ )  1/2 0(~l) = [ T ( R , Z ) - -  T , ] /AT  

~l = Z / S  R e =  SZQI/v B = f lAT  Pr = v/7 

where AT = T 2 -  Tl is the characteristic temperature 
difference. The transformation is essentially of von 
Karman-type but with an additional treatment to the 
temperature function and, therefore, the energy equa- 
tion. The governing equations (1) (3) can thus be cast 
into the following dimensionless form: 

H"'  = Rel/E H H  ''' -4Re3/2(1 + G ) G ' -  2B Re3/20 ' 

(4) 

(5) 

(6) 

G" = R e l / 2 ( H G ' - H ' G -  H ") 

0" = Pr Rel/2HO ' 

in which the continuity equation, 

H'  = --2Rel/2F (7) 

has been introduced to simplify the system by eli- 
minating the radial velocity function F(q). The super- 
script ( )' denotes differentiation with respect to ~/, 
e.g. H' = dH/d~l and G" = dZG/dq 2. Equations (4) and 
(5), respectively, are the radial and circumferential 
components of the momentum equation (2). Upon 
defining a dimensionless pressure parameter 
0 -- P*/Pr 82~2 and integrating Z component of the 
momentum equation, the pressure can be determined 
by 

tip = R e - 3 / 2 H ' - - R e  I H 2 / 2 - B F r  10, (8) 

where Fr =- S ~ / 9  is the rotational Froude number 
characterizing the ratio of centrifugal to gravitional 
forces. Considering a rapidly rotating system, the last 
term in (8) can be neglected for Fr >> 1. 

Boundary conditions 
On the disks, according to the no-slip condition, 

the radial and axial velocities are zero. The tangential 
velocity G at the disk l is identically zero; however, 
due to relative motion of two disks, the tangential 
velocity at disk 2 is R ( ~ 2 - ~ ) .  Thermal boundary 
conditions at disk 1 and disk 2 are uniform wall tem- 
peratures Tl and T2, respectively. By defining a dimen- 
sionless rotation rate for disk 2, 7 =-- (f~2--~0/Q1, the 
boundary conditions can be written as 

H(0) = H'(0) = H(1) = H'(1) = 0 

Fig. 1. Model of co-axially rotating infinite disk system. G(O) = G(1) --7 = 0 
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0(0) = 0 (1 ) -  1 = 0. (9) 

Note that the boundary conditions for F(q), 
F(0) = F (1 )=  0, have already been replaced by 
H'(0) = H'(1) = 0 through the relationship between 
F(r/) and H'(q) in equation (7). 

Governin9 parameters 
There are five parameters involved in the problem 

considered, they are Pr, Re, B, 7, and Fr. In the present 
analysis, the Prandtl number Pr is 0.7 for air and 
the Froude number is assumed to be infinite. The 
Reynolds number Re and the buoyancy parameter B 
(in some literature, f lAT  was called thermal Rossby 
number) characterize rotational motion and cen- 
trifugal-buoyancy effects, respectively. The parameter 
? denotes the relative rotation rate of the disk 2 with 
respect to the disk 1. For example, the values of 7 = 0, 
- 1 and - 2 correspond to the cases of ~')2 ~ ~"~1 ( c o -  
rotating disks), ~ ¢ f~2 = 0 (rotor-stator), and 
f~2 = - f~ (counter-rotating disks), respectively. 

In the previous studies, e.g. refs. [2, 4, 5, 8], the 
parameter B was absent, and the only flow parameter 
was Re. By comparing with the mixed convection in 
gravitational force field, the roles of the parameters 
Re and B are similar to that played by the forced-flow 
and buoyancy parameters, respectively. Superficially, 
B = f lAT  is simply a thermal parameter and has 
nothing to do with rotation. In terms of the length 
scale S, velocity scale Sf~l and replacing the gravity 9 
by Sf~, however, the parameter B is just equivalent 
to the form of the Richardson number in mixed con- 
vection in gravitational force field, i.e. B - f l A T  
= ( S ~ ' ~ 2 f l A T S 3 / v 2 ) / ( ~ ) I S 2 / v )  2 = G r / R e  2 = Ri, which 
characterizes the relative importance of buoyancy to 
the forced-flow in mixed convection problems. The 
zero thermal Rossby number, B = f l ( T 2 - T O  = O, 
indicates two possible buoyancy-free situations, i.e. 
fl = 0 or T2 = T,. The former, fl = 0, characterizes a 
forced-convection flow, in which buoyancy effect is 
ignored while the flow temperature nonuniformity 
and non-zero heat transfer are allowed. For the case of 
T2 = T~, no matter what 0(q)-solution is, the uniform 
temperature profile of T(q) - TI = T2 can be shown 
from the definition of O(q), i.e. T(r/)= T~+O(q) 
(T2--TO. Therefore, the buoyancy effect and the 
heat transfer both are absent in this isothermal 
flow field. 

Notice that, in the present flow configuration, Re 
can be used to characterize the forced flow as long as 
7 ¢ 0 (f~ ¢ f~2). In the conventional free-convection 
study, flAT was usually small for the validity of Bous- 
sinesq approximation. For example, the magnitude 
less than 0.1 in the study of Gray and Giorgini [34] 
and, in a few cases, f lAT  <~ 0.2 were used [35]. In the 
present study, the buoyancy parameter is restricted in 
the range of I B I ~< 0.1. The Reynolds number based 
on the disk spacing lies up to the magnitude of O(103). 
The rotation parameter 7 ranging from 0 to - 2  is 
considered. 

Definitions o f  friction factors and heat transfer rates 
Based on the definition Cf = 2/t(t9 U/On)w/[p(R,QO:], 

where (SU/an)w denotes the velocity gradient in nor- 
mal direction to the walls, the radial friction factors 
at disks 1 and 2 are 

Cfr~Re* = 2F'(0) Cfr2Re* = - 2 F ' ( I ) ,  (10) 

respectively. Where Re* = (Rf~)S/v  denotes the local 
Reynolds number. Similarly, the tangential friction 
factors are 

CftlRe* = 2G'(0) Cf~zRe* = - 2 G ' ( I ) .  (11) 

The parameters CftlRe* and Cft2Re* are closely related 
to the torque of the rotating disks. Heat transfer per- 
formance is expressed by Nusselt number defined as 
Nu- - - (OT/On)w/ (Tz - -T~) .  By this definition the 
positive and negative values of Nu for T2 > T1 denote 
the heat transferred from and to the wall, respectively. 
For Tz < T~, the situation is reversed. The heat trans- 
fer rates on the two disks are 

Nut = -O'(O),Nu2 = 0'(1). (12) 

Asymptotic natures o f  solution behavior 
In the past decades, numerous asymptotic analyses 

have been carried out to investigate the hydrodynamic 
natures in the limiting cases of high Reynolds 
numbers. The present mixed convection problem is 
more sophisticated for the coupling of flow and tem- 
perature fields. Before solving the coupled system, 
some characteristic features of the solution behavior 
for Re >> 1 and Pr ~ O(1) are examined analytically. 
By stretching the coordinate r/with a factor of Re I/2, 
i.e. ~ = Re~/2q, equations (4)-(6) can be turned into 
the form: 

H~¢~e = HHt¢~+4(1 +G)G¢-2BO¢ (13) 

G¢e = HG¢--H¢G--H¢ (14) 

0¢~ = PrHO¢, (15) 

where the variables with the subscript ¢ denote their 
differentiations with respect to 4. It demonstrates that 
the scales of Ekman and thermal boundary layers are 
of O(Re-~/2), and the so-called inner-solution within 
the layers can be found by solving equations (13)- 
(15). Whereas the core solutions outside the layers are 
governed by the equations (4)-(6) for Re >> 1. Upon 
dividing by Re 3/2, Re 1/2 and Re 1/2, respectively, equa- 
tions (4)-(6) become 

Re-  3/2 H ' '  = Re -  I H H "  + 4(1 + G)G' - 2BO' 

(4a) 

Re-I/2G" = H G " - H ' G - H "  (5a) 

Re-I/zo" = Pr HO'. (6a) 

Taking a limit of Re ~ o% results governing equations 
for core flows are: 
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2(1 +Gc)G'~-BO'c = 0 (16) 

H~G'~-H'~(1 +G¢) = 0 (17) 

nco'~ = 0,  ( t 8 )  

where the variables G¢, Hc and 0c stand for the core 
solutions or the outer-solutions in an asymptotic 
analysis. The possible solutions of (16)-(18) are: 

(a) 0c=K~ G¢ = - l  and He remains 

urLdetermined 

(b) 0 c = K ,  G c = - - I + ~ / ( B K , + K 2 )  

andH~ = K3(1 +G¢) 

(c) H o = 0  Q = - - I + x / ( B O ~ + K 2 )  

and 0¢ remains undetermined. (19) 

In the above solutions, the parameters KI, K2 and K3 
and the undetermined solutions depend on the values 
of B and 7, and can be determined in the matching 
process of the inner and outer solutions for various 
values of B and 7. Among the solutions in equation 
(19), the solution (c) seems physically impossible, 
since the zero axial velocity in the core region, Hc = 0, 
implies that there is no mutual communication 
between the fluids adjacent to the hot disk and the 
cold disk, and no interaction of wall-flow and the 
core-flow. 

Analogous to the well-known layer-type (singular 
perturbation) problem: e~b"- ~bq~'- ~b = 0 with 
~b(0) = ~b I and ~b(1) = q~2 [36], the solution behavior 
strongly depends o~ the boundary values ~bl and ~b2. 
Therefore, the diversity of the self-similar solution 
can be expected for various values of the rotational 
parameter 7. For the complexities of the coupled sys- 
tem of nonlinear equations, there is no attempt herein 
to find the complete ;asymptotic solutions. Instead, the 
numerical solutions are used to explore the cen- 
trifugal-buoyancy effects at various conditions, while 
what was discussed in this section can be used to check 
and interpret the numerical solutions for high Re. 

NUMERICAL PROCEDURE 

The system of equations (4)-(6) with boundary con- 
ditions (9) consists of a nonlinear two-point boundary 
value problem. A typical shooting method can be 
started with the guessed missing conditions: 
H"(0) = a, H"'(0) = b, G'(0) = c and 0'(0) = d. In an 
iterative procedure, the values of a, b, c and d are 
updated by continuously using Newton's method until 
the boundary conditions at r /= 1, i.e. H(1) = H'(1) = 
G(1 ) -  7 = 0(1) -1  =0 ,  are met. The iteration is 
regarded as convergent if the stopping criterion, 
max(Aa, Ab, Ac, Ad)~< 10 -8 is satisfied. Low-Re 
solutions can be easily obtained using conven- 
tional shooting techniques. However, due to the 
stiffness of the system, the convergent solution is get- 
ting hard as Reynolds number increases. By applying 

non-uniform grid strategy, Aitkin acceleration tech- 
nique, and the under-relaxation, the convergent solu- 
tions at high Reynolds numbers can be attained. A 
continuation concept is employed in the solution pro- 
cedure, in which only one parameter, e.g. Re, B or 7, 
is changed case-by-case as the others are fixed. For 
example, by using the extrapolation of the solutions 
at Re, Re+ARe, Re+2ARe as the initial guess for 
solutions at Re+3ARe, the convergence charac- 
teristics of the iteration procedure can be improved. 
In the present nonlinear problem multiple solutions 
may exist for certain conditions. To make the solu- 
tions remain in the same branch, in the continuous 
computations, the change in the parameter should be 
small enough. The typical values of the small 
increments ARe = 1, AB = 0.001 and A 7 = 0.001 were 
usually used. Through the numerical experiments, the 
grid-dependence of the numerical solutions were 
examined. For Re <~ 500, the grid of 201 points is 
sufficient for grid-independent solutions. For high Re, 
small ] 7 ], and/or large ] B I, the finer grid, e.g. grid of 
400 points or more, was used for either higher res- 
olution and better convergence of the solutions. The 
symmetry nature of the two-disk flow solutions with- 
out considerations of heat transfer and centrifugal- 
buoyancy has been discussed by Keller and Szeto (K- 
S) [37]. An extension of the K-S lemma is developed 
for the present non-isothermal flows, and is stated in 
the Appendix. The analytic transformation for cor- 
respondence of the symmetric (or conjugate) solutions 
can be used to check the validity and the accuracy of 
the present numerical procedure. 

RESULTS AND DISCUSSION 

Comparisons of the similarity solutions with the finite- 
disk results 

Except for the centrifugal buoyancy term, the pre- 
sent formulation differs from that in the previous 
works, e.g. ref. [4], for the different frames of reference 
used in the two studies. However, it is easy to verify 
that the two systems of equations are equivalent to 
each other under the buoyancy-free condition. Since 
the infinite-disk is an idealized flow configuration for 
theoretical analysis, the solutions can only be checked 
with the available finite-disk data. To the author's 
best knowledge, however, there is no measured data 
available on centrifugal-buoyancy in co-axially ro- 
tating disks. Figure 2 shows the comparisons of the 
present similarity solutions of rotor-stator (7 = - 1) 
at B = 0 with the Navier-Stokes computations [38] 
and the LDA measurements [39] on finite disks of the 
radius-to-spacing aspect ratio Ro/S = 10. The agree- 
ment seems reasonable. In the previous studies [5, 6], 
it was claimed that the similarity structure can be 
retained in the inner region but broken down near the 
disk rim due to the presence of the edge effects. From 
the comparison in Fig. 2, obviously, the present simi- 
larity solutions appear reasonable for flow in partial 
region of the field, e.g. at least up to R/Ro ~- 0.6 in 
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0 , 3  | l | i ~"' i , , , , 

] Re = 5 0 0 ,  7 " - L  B - 0 .  
0 .2  i 

Infinite  dlmlam: 

~ - -  ~m|l~tr~ W s o l u t i o n ,  

0.1 ~ P r e u n t  

F 0 .0  - - -  x 

- o . 1  1 , ~ a ~  ( R o / s - t o ) :  ' ~ ,  

- 0 . ~  - - -  Numerle.al  procllnUon 
at R / ~ , -  0.5 [ae] 

- - 0 . 3  I I , , I , , , , 

- 0 . 0  . . . .  , . . . .  

n~t.~ d~k,, (Ro/S - 10): -[ 
- 0 . Z  - -  - Numer loa l  pred lo t ion  -I 

at ~/a.= 0.5 [se] -[ 
- o . ~  i o u ~  ~ , , , ~ , = , , ~ t ,  -t 

t, t s,a ] 

-I.0 i , , , , , , , , • 

0.0 0 .5  1.0 
r/ 

Fig. 2. Comparisons of the similarity solutions with the pre- 
vious finite disk results. 

this case. Similar consequence for flow in laminar 
regime o fRe t  = flR2/v = 1 x 105 can be found in the 
work of  I toh et al. [40]. 

Velocity and temperature fields 
In the present work, the velocity and temperature 

fields at various rotational conditions, i.e. disks rot- 
ating in the same sense, in opposed senses, and as a 
ro tor-s ta tor  system, are studied. For  convenience, 
only the typical cases of  f~2 = fZl and fZ2 = - f ~ l  are 
presented for co-rotating and counter-rotating disks, 
respectively. The case fZl ~ fZ2 = 0 is the only case 
of  the rotor-s ta tor  and is certainly included in the 
following discussion. 

Co-rotatin9 disks with fZ2 = f~ (7 = 0). In buoy- 
ancy-free cases, the fluid rotates with the system as a 
solid body and without any flow in radial and axial 
directions. For  B = 0 with arbitrary Re, the solutions 
are F = G = H -= 0 and 0 - t/. Consideration of  the 
non-isothermal flow results in free-convection effect. 
In Fig. 3, buoyancy-induced flows at various Reynolds 
numbers and buoyancy parameters are shown, while 
the temperature solutions remain nearly as the con- 
duction state. 

In this pure free-convection situation, the fluid is 
pumped radially outward along the cooler disk and 
the incoming fluid is supplied by the inward sucked 
flow along the hotter disk. The flow in the near-wall 
regions is radially inward or outward depending upon 

the relative level of  wall temperatures at the two disks. 
For  B > 0, i.e. /'2 > T~, the cooler fluid adjacent to 
the disk 1 can be pushed radially outward just like the 
results in Fig. 3(a). At the relatively higher Reynolds 
numbers, Re > 100, the bulk radial flow is confined 
in the thin layers near the rotating disks and a core 
region of  slow-moving fluid forms. The rotational rate 
of  the fluid changes only slightly, e.g. G < 0.025 at 
Re = 300. In this situation, the flow is still conduction- 
dominated and the temperature field lies not far from 
the conduction state. For  B < 0 in Fig. 3(b) the flow 
direction is inverted due to the adverse effect of  buoy- 
ancy. 

Counter-rotatin9 disks with ~q2 = - f ~  (Y = - 2 ) .  In 
case two disks rotate in opposite senses but at the 
same rate, due to the strong effects of  rotation near the 
disk walls, the Coriolis effect pumps the fluid radially 
outward, the inward flow in the central region is 
induced for continuity. The incoming fluid in the core 
region approaches the two disks separately and forms 
a two-cell structure, of  which the region between the 
dividing stream-surface (DSS, the plane of  H = 0 par- 
allel to the disks) and the disk 1 ( r /=  0) is cell 1 and 
that between DSS and disk 2 is cell 2. For  buoyancy- 
free case, B = 0, the DSS locates at r / =  0.5, while for 
B > 0 (B < 0), the two cells are of  different strengths 
and the DSS at somewhere q > 0.5 ( r /<  0.5). As 
shown in Fig. 4(a) for relatively lower Reynolds 
number, Re = 100, the buoyancy effects on the vel- 
ocity and temperature fields are remarkable. While 
for the higher Reynolds numbers, e.g. Re = 500 and 
1000 in Figs. 4(b) and (c), the influences of  the cen- 
trifugal-buoyancy on the tangential velocity G are 
diminished. Buoyancy effect on radial velocity F is 
still obvious in the thin Ekman layer but gradually 
alleviates in the core region. 

It is noteworthy, however, that the temperature dis- 
tribution is strongly affected by the buoyancy 
especially in the cases of  high Re. For  B > 0, com- 
paring the solutions of  B = 0.1 with that of  B = 0 at 
Re = 500 in Fig. 4(b), it is found that the magnitudes 
of  the radial and axial velocities both are increased in 
cell 1 region for B = 0.1. The fluid in cell 2 is con- 
duction-dominated for the relatively slow motion. 
Two Ekman boundary layers form near the disk walls 
and, outside the layers, there appears a non-rotat ing 
core region where the fluid moves radially inward. 
Since the flow temperature in the core region lies at 
the temperature close to T2, the thermal boundary 
layer on the disk 1 is thinner than that on the disk 2. 
Relatively, the faster-moving flow in cell 1 is con- 
vection-dominated. For  B < 0, the buoyancy effects, 
assisting or opposing, on the two walls are reversed, 
the roles of  two cells interchange. At  the higher Reyn- 
olds number, Re = 2000 in Fig. 4(c), the above 
characteristic features become more noticeable. 

Rotor-stator system of  ~,  ~ f~2 ---- 0 (7 = --1). 
Effects of  centrifugal buoyancy on the velocity and 
temperature fields in a ro tor-s ta tor  system are shown 
in Fig. 5. For  Re -= 100 in Fig. 5(a), the fluid adjacent 
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to the rotating disk: is pumped radially outward and 
the fluid near the stationary disk is sucked radially 
inwards as well as axially towards the rotating disk. 
As the buoyancy effect is present, e.g. B = 0.1, the 
cooler fluid near the rotating disk can be accelerated 
by the buoyancy-assisting effect; and the reverse situ- 
ation appears near 1:he stator. The more pumped fluid 
presents, the larger the negative axial velocity is. The 
most interesting feature is the variation of  the cir- 
cumferential veloci~Ly G, which is not  a simply mon-  
otonic function. Tile slowly rotating fluid near the 

stator moves towards the rotor  as well as radially 
inward. Therefore, as the fluid migrates to the location 
of, say, t / =  0.7, the smaller R causes a larger 
rotational rate due to the conservation of  angular 
momentum,  see Fig. 5(a). As the fluid moves con- 
tinuously to the location of  t / =  0.3, the radially out- 
ward motion leads to an increase in R as well as a 
decrease in rotational rate. However,  in the proximity 
of  the fast rotating disk ( t / <  0.2), the Coriolis and 
viscous effects dominate  the momentum exchange 
based on the aforementioned procedure and the cir- 
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Fig. 4. Velocity and temperature solutions of counter-rotating disks with 7 = - 2 .  (a) Re = 100, (b) 
Re = 500, (c) Re = 2000. 

cumferential  velocity presents a peak value as well 
as the high gradients.  In case B < 0 or T2 < T1, the 
in terpre ta t ion  of  B = --0.1 solut ion follows the same 
philosophy.  

Fo r  the case of  Re = 500, in Fig. 5(b), the fluid 
adjacent  to the s ta tor  lies approximate ly  at  the same 
tempera ture  as the disk wall, bu t  a thermal  bounda ry  
layer forms at the ro ta t ing  disk. F r o m  the radial  vel- 
ocity solution of  B = 0, an  inviscid core with a lmost  

cons tan t  ro ta t iona l  rate emerges. Due  to the buoy-  
ancy-assist ing effect at  B = 0.1, the radial  velocity 
near  the ro tor  (cool disk) increases while tha t  near  the 
s ta tor  (hot  disk) decreases, and  it results in a larger 
axial velocity H. Therefore,  more  fluid at  slow ro ta t ing  
rate near  the s ta tor  moves  towards  the ro ta t ing  center.  
Fo r  the conservat ion  of  angular  m o m e n t u m ,  the 
higher  ro ta t iona l  rate can be resulted a r o u n d  r / =  0.8 
due to the rapid  decrease in radial  distance R. In 
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another aspect, this faster-rotating fluid may encoun- 
ter a large centrifugal and Coriolis forces which push 
the fluid radially outward and make it lose the angular 
speed as moving axially, see F and G in the region of  
0.5 < r / <  0.8 in Fig. 5(b). As for the core region, the 
fluid is nearly radially stationary and rotates at an 
almost constant rate. 

As Re increases to a higher ualue, e.g. Re = 1600 in 
Fig. 5(c), the flow and temperature fields show the 

same trend as that at Re = 500 except the thinner 
Ekman and thermal boundary layers near the rotating 
disk and the larger as well as flatter core region. By 
inspecting the solutions at high Re, it is observed that 
the noticeable temperature gradient appears in the 
thermal boundary layer and the centrifugal buoyancy 
presents only small effects on the temperature and 
radial velocity distributions. However,  the tangential 
and axial velocity can be indirectly but significantly 
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altered by buoyancy through the complicated mech- 
anisms of momentum exchange. Note that the 
remarkable buoyancy effect on velocity fields appears 
even in the region of r /> 0.4 where the fluid is almost 
isothermal. 

Centrifugal-buoyancy effects on the flow structures 
in R Z  plane for co-rotating (7 = 0), counter-rotating 
(7 = -- 2) and rotor-stator (7 = - 1) systems are sum- 
marized in Figs 6(a), (b) and (c), respectively. The 
thin curves in Fig. 6 denote radial velocity distribution 
F(t/) with a vertical line as the base o f F  = 0. The bold 
lines with arrows are the streamlines describing R - Z  
flow structures. Under the influence of the rotation- 
induced buoyancy, change in sign of the parameter B 
reverses the flow direction in the case of co-rotating 
disks with ~ = 0. For the two-cell flow structure in 
counter-rotating disks, the buoyancy effects for posi- 
tive and negative values of B are reflected in the inter- 
change of the strengths of the two cells. Both of the 
above two cases present a symmetric nature of the 
flow field (see Appendix). In rotor-stator case 
(7 = - 1 ) ,  the centrifugal-buoyancy seems to have 
only insignificant influence on the flow structure. 

Boundary layers and core solutions at high Reynolds 
numbers 

In high-Re cases, the velocity and temperature dis- 
tributions present the high-gradient layers near the 

rotating disks. For the quantitative analysis, herein, 
the location of the radial velocity peak near disk 1 is 
designated as the thickness of Ekman layer 6E/S. In 
co-rotating disks for cases of Re < 500 considered, 
Ekman layers emerge on the two disks; but, for the 
small change in temperature field from the conduction 
state, no thermal boundary layer appears. Variation 
of 6E/S with Re is shown in Fig. 7(a) and, obviously, 
buoyancy effect on the Ekman layer is negligibly 
small. The Ekman layer thickness in this situation can 
be well correlated as 

6E/S = 0.782Re -°5. (20) 

For the rotor-stator and counter-rotating systems, the 
flow mechanisms are rather different from the free- 
convection flow in co-rotating disks. Correlation of 
the Ekman layer thickness for 7 = - 1 is formulated 
a s  

6E/S = 0.923Re -°5 (21a) 

in which buoyancy effect is insignificant. In the 
case of the counter-rotating disks, the prediction of 
the correlation equation (21a) is surprisingly good at 
least in the range of 150 ~< Re <<, 3000, see Fig. 7(b). 
However, the influences of buoyancy on the thermal 
boundary layer can not be ignored. Upon considering 
the location of 0 = 0.999 as the thermal boundary 



Axisymmetric mixed convection 1579 

4 

2 

to* 
§ 

2 

l if t  

5 

8 

xo" 
20  

4 

2 

1O* 
5 

8 

l i f  t 

5 

l i , , i e l !  i ! | ! 

( ' )  7 = 6 
A B : - 0 . 1 0  
o B:-O.O§ 
u B : - O . 0 2  

- - .  ~z. (zo) 

I ' , , | I s |  I ' | | 

5 0  10" 2 8 

l l e  
, o , , , , , , I  

(b)  7 : - - I  
A g : - 0 . 1  
o B :  0.0 ~i j " B :  0.1 

Eq. (z l )  

*'-. :: 

2 7 : - 2  
x B : O . O  

1 0 '  , i i | | l p i |  i 

10" ~: 5 10  a s 8 

R e  

Fig. 7. Ekman and thermal boundary-layer thicknesses: (a) 
7=0and(b)  7 = - l a n d - 2 -  

1.0 

0.8 7 :  - 2  l !" 

0.6 l i 0 .4  

0.ti t 
-e.  

0 . 0  q F " W T "  - -  T - T - T T T - T  - r -  T - -  T - -  n 

-0 .1  0.0 0 . l  
B 

1.0 . . . .  , . . . .  
(b) Re = 1500. 7 = - 1  

0.0 

0.6  ~ 

0 .4  

0.2 
f 

0 . 0  i t t i I I ' ~ ' 

-0 .1  0.0 0.1 

B 

Fig. 8. Centrifugal buoyancy effects on core flow properties 
at high Reynolds numbers (a) counter-rotating disks at 

Re = 2000, (b) rotor-stator system at Re = 1500. 

layer thickness &;/;~ in rotor-stator solutions, the 
values of 6.r/S at warious conditions are plotted in 
Fig. 7(b). At the rehttively higher Reynolds numbers, 
Re > 500, 6-r/S can be correlated as the following for- 
mula: 

6T/S = 13.635(1+4.984B) 0.202 Re-O.k. (21b) 

Note that the thickness of the Ekman and thermal 
boundary layers are both proportional to Re -°5 just 
like the results of asymptotic analysis. 

In the high-Re cases, as in the aforementioned field 
solutions, a core region emerges. Different core solu- 
tion behaviors can be observed for various rotational 
conditions. From high-Re solutions, in the counter- 
rotating case, Fig. 4(c), it is found that the core solu- 
tion, i.e. 0o = constant, Gc = - 1 and Hc is a linear 
function, can be categorized as that of equation (19a). 
In the rotor-stator system, see Fig. 5(c), the fluid 
in the core region possess zero radial velocity, and 
uniform tangential and axial velocities. The fluid tern- 

perature is nearly the same as the disk 2 except that 
in the thin thermal boundary layer. Obviously, the 
high-Re core solution for ~, = - 1 is exactly the cat- 
egory in equation (19b). The characteristic features of 
the core flow in a counter-rotating system at 
Re = 2000 are shown in Fig. 8(a). As shown in Fig. 
4, it is reasonable to characterize the core flow tem- 
perature 0c and radial velocity Fo at r /=  0.5. The 
former, 0~, is strongly influenced by the buoyancy 
effect, while the effect on the latter, Fc, is diminished 
in the high-Re cases. For 7 = - 1 and Re = 1500, Fig. 
8 (b) shows the representative core rotation rate ~ c / ~  
and the axial velocity Hc at ~/= 0.35, in which it is 
believed that the asymptotic natures have appeared. 
It is noteworthy that, in Fig. 8(b), both the core 
rotation rate and the axial velocity are strongly affec- 
ted by the buoyancy effects. Additionally, in an 
asymptotic sense of equation (8), the dimensionless 
pressure function q~ is diminished as Re ~ o0. 
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Friction factors and heat transfer rates 
Friction factors and heat transfer rates for the cases 

of  7 = 0, - 1 and - 2  are shown in Figs 9-11, respec- 
tively. For  co-rotating disks (7 = 0) with B = 0 in Fig. 
9, the radial and tangential friction factors are both 
zero and Nu = + 1 (conduction state) at two disks. 
For  B # 0, increasing Re and B both enhance buoy- 
ancy effects on friction factors and heat transfer rates. 
In the ro tor-s ta tor  system, the values of  CrrRe*, 
CrtRe* and Nu are nearly linearly varying with B, see 
Fig. 10. Generally speaking, they are not  strongly 
influenced by the centrifugal buoyancy; however, at 

high Re, the buoyancy effect may become more impor- 
tant for friction factors at disk 2. For  counter-rotating 
disks of  7 = - 2 ,  Fig. 11 indicates that the friction 
factors and heat transfer rates are significantly affected 
by the centrifugal buoyancy. Particularly, due to the 
strong influence of  buoyancy on the temperature fields 
in this two-cell flow structure, the variations in Nusselt 
numbers are most striking. In the high-Re case of  
Re = 1000, the influences of  the buoyancy effect 
increase, at least on the radial friction factor CrrRe* 
and Nusselt number  Nu. 

Physically, the heat transfer through two disk walls 
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are not in balance. The fluid enthalpy change in the 
radial flow process of sucked inward and then pumped 
outward motion must be included. Mathematically, 
integrating the energy equation (6) in the region of 
0 ~< ~/~< 1 and introducing the continuity equation (7) 
leads to 

~0 I 0'(1)--0'(0) = 2PrRe FOdq (22) 

where the integral, which stands for a net enthalpy 
change of the radial 1low, is not necessarily zero and, 
therefore, O'(1) ¢ 0'(0) in general. In Figs 10 and 11, 

for example, the values of Nul + Nu2, i.e. 0'(0) -- 0'(1), 
are not zero and may become remarkable for large 
Re. 

CONCLUDING REMARKS 

A similarity analysis for rotation-induced forced, 
free and mixed convection in non-isothermal flows 
between coaxial infinite disks has been developed. 
Through the present theoretical model, the non-iso- 
thermal flow behaviors in the presence of centrifugal 
buoyancy can be explored in detail, and the following 
conclusions can be drawn: 

(1) The centrifugal-buoyancy is a significant effect 
on the flow and heat transfer characteristics of this 
class of rotating disk problems. Although the par- 
ameters Re and B can be used to characterize the 
forced (for 7 # 0) and free convection effects, unlike 
that in the conventional mixed convection in gravi- 
tational force field, however, as Re increases the buoy- 
ancy effect can still survive and even grow rather than 
diminish in some circumstances. It is attributed to 
the special coupling of forced and buoyancy-induced 
flows in this problem. The forced flow is caused by 
the rotation-induced pumping effect. Raising the 
rotational rate to increase the forced flow (Re) effect 
can also lead to an enhancement in the centrifugal- 
buoyancy. 

(2) The centrifugal-buoyancy effects on velocity 
and temperature fields are quite different in various 
rotational conditions. In co-rotating disks with 7 = 0, 
the centrifugal buoyancy induces a buoyant flow and 
plays a role as the buoyancy in conventional free con- 
vection. In a counter-rotating system of 7 = - 2 ,  the 
most striking influences of the buoyancy are those on 
the temperature field and heat transfer rates. Also, 
noticeable effects on the two-cell flow structure includ- 
ing radial and axial velocities and the location of the 
DSS can be observed. In rotor-stator systems, 
especially at high Reynolds numbers, the major effects 
of buoyancy appear on the rotating core in the off- 
wall region. In this situation, the buoyancy effects on 
the boundary parameters, i.e. the friction factors and 
heat transfer rates, are relatively small. 

(3) High-gradient layers appear on the rotating 
walls at sufficiently high Re. Generally, the Ekman 
layer thicknesses are of order Re -t2 for various 
rotational conditions and not significantly affected by 
the centrifugal buoyancy at least for the buoyancy 
parameter of I Bl~< 0.1 in this study. No thermal 
boundary layer emerges on co-rotating disks at 
Re < 500. For rotor-stator systems, thermal bound- 
ary layer thickness is also proportional to Re 1/2 but, 
on it the buoyancy effect can not be ignored. Cor- 
relations for thicknesses of the Ekman and thermal 
boundary layers for 7 = 0, - 1 and - 2 are proposed. 

(4) In a complex nonlinear dynamic system like 
this, solution multiplicity and bifurcation nature are 
significant. A study of nonlinearity is beyond the scope 
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of the present  work;  however,  it is useful to fur ther  
the unders tand ing  of  the present  flow configurat ion 
and  is a worthwhile  study. 
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APPENDIX 

Symmetry of non-isothermal flow solutions in two-disk prob- 
lems 
From the analytic characteristics of the problem, each solu- 
tion with 11+71~  < 1, but except 7 = - - 1 ,  has a cor- 
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responding solution with 11 +71 /> 1. The situation is just 
equivalent to interchanging the roles of the two disks. For 
non-isothermal flows with heat convection and centrifugal 
buoyancy, the lemma for solution symmetry proposed by 
Keller and Szeto [37] has to be modified in terms of the 
present nomenclature. 

Lemma: Let the system of the equations (4)-(6) and bound- 
ary conditions (9) with 7 ~ 1 have a solution set J .  

J = [H(q), G(r/), 0(~/), Re, B, y, on 0 ~< q ~< 1] 

then a conjugate solution set J is given by 

) = [I=I(~),(~(~), ~(~), l~e,]~, ~, on 0 ~< ~ ~< l] 

where 

/?(~) - -H(~) /~/ ( i  +~1), d(~) --- [G(~)-y]/(1 +y) 

O------1--O(q) ~ = l - - q ,  l~e=-il+~lRe 

/ ~ - = - B / ( l + 7 )  2, ~ - - ~ , / ( 1 + ~ ) .  (A1) 

According to the symmetric nature, without actually com- 
puting it, each conjugate solution in 3 can be found by 
directly converting its counterpart in o¢ using the trans- 
formation in equation (A1). This analytic transformation 
can be used to check numerical solutions. 


